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Introduction

Kalman Filter is very useful in the case of model mismatch and noisy measurements or data.
It is the main tool for state estimation in the above mentioned cases. It is based on state space
representation for mathematical model of real world system.

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the Kalman
filter which linearizes about an estimate of the current mean and covariance. In the case of well
defined transition models, the EKF has been considered.

Formulation

Consider the following nonlinear system, described by the difference equation and the
observation
model with additive noise:

X, = f(x_q) + 9(u,4) + W, _, w, , € N[0,0]
Y, =h(x,) + v, v, £ N[0,0]

The stochastic noise in state estimation(w,) and measurement(v,) are approximated to lie on
Gaussian distribution curves with a zero mean and a variance o.
The initial state x, is a random vector with known mean y, = E[x,] and covariance P, =

E[(Xo = Ho)(X, = UO)T 1
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Prediction and Correction
After linearizing of the continuous and time invariant FCC model given, we discretize to
implement prediction and correction steps through the following equations:
Prediction Step:

Xiean = Ay + BU,
P = AP, AT+Q
Where A = (6f/6X)@X,, B = (69/6X)@U,, and Q is covariance matrix of w,
Correction Step:
Xirtnert = Kiaame + KG(Yyeuq - CXip)
Pk+1/k+1 = (I - KG(C))Pk+1/k
Where Kalman Gain KG = P,,,,C"(CP,,,,C" + R)"and R is covariance matrix of v,

In the given model, measurement values are provided, so C is taken as [0 0 1] for case 1, with
only T,,measured and [1 0 0;0 0 1] for case 2 with C,.and T  both measured.

Tuning - KF PARAMETERS

Selection of Q and R : Q is the noise covariance matrix and R is the measurement noise
covariance matrix. Kalman filter is sensitive to errors in Q and R and its output can be
unacceptable if errors are large. Matrix R is much easy to ascertain, because the measurement
equipment often has some error characteristics. The measurement noise covariance R is
estimated from knowledge of predicted observation errors. Here we chose R matrix to be a
diagonal matrix containing the variance of the measurements as the entries. We chose it to be a
diagonal matrix to achieve decoupling of error contributions. The entries were fixed on a trial
and error basis was chosen to have a higher value compared to Q because we depend more on
the predictions.

Selection of P Matrix: P, is your initial state covariance. That expresses how much you know
about the initial estimate of the state x,.If we have no idea it is initially set to a high value. Since
we are depending more on our predictions rather than the measurements generated from the
model. We chose it to have a small value.

MATLAB Tools Used
jacobianest (@fun,var) : this function was used to calculate A, and B, at each timestep.It
takes the function handle and the variable as the input and then it will return the jacobian matrix
along with the error.

System name =ss(A, B, C, D) : This function defines a LTI system with the parameters A,B,C
and D.

c2d(sys, Ts) : This function is used to discretize a continuous model to a discrete model with a
given sample time of Ts.

ssdata(sys) : This function is used to extract the model parameters from a system.In our code it
was used to extract the model parameters after it was discretized
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Case 1 Results

Case 1: When only one state is measured (T_rg)
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Case2 Results

Case 2: When two states are measured (T_rg and C, )
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General Observations

EKF and Calculating the Jacobian Matrix : Since the FCC model is a non-linear. We will have
to linearize it at each instant around the given state. The A and B was calculated using the
Jacobianest function. The Extended Kalman Filter is a Local Asymptotic Observer for Nonlinear
Discrete-Time Systems. As a result the model is controllable at each time step.

But the A.and B, matrix usually had non real components. This was because the because of
the improper selection of the Q matrix. Therefore by iteratively changing the values of Q a
proper a real A, and B, matrix was attained.

State Space Models from Matlab: After calculating the A, and B, matrix, the analysis of this
model was done using MATLAB control systems toolbox. After feeding these data into the ss
(A,B,C,D) function. It was then converted into discrete model by using the c2d conversion
function. A common error that frequently occurred was ‘The value of the "a" property must be a
numeric array without any Inf's or NaN's. . This was due to the improper selection of Q matrix
due to which some of the values returned from the Jacobian matrix were Inf or NaN.

Another error that was frequently obtained was ‘The "c2d" command failed because some
unstable dynamics with large positive real parts caused overflow. Try reducing the sampling
period for discretization.” This error was observed when very small or very high values of the Q
matrix was used. Since reducing the sampling time was not an option this error was overcome
by using different values of Q

Observation from results

e Even if Q was changed to large values, there was no effect on T, only change observed
was frequency of noise of T ;varied with diagonal entries of Q matrix.

e While C, and O, was largely dependent on entries in Q matrix because the order of
magnitude of these stats were negligible compared to that of T

e When P,, was zero for some values of Q, the ss() function gave error due to imaginary
values of state space parameters

e XO effect was negligible, as by the end of first 5 iterations, it would reach the same value
irrespective of other parameters and tuning

e T, is subject to a lot of noise while estimation. Frequency of noise and estimated value
changes with Tuning. Based on this optimal tuning values were selected as O and C_,
remained unaffected most of the time, showing similar characteristic

e O, in both cases approaches zero in the estimation. This behavior shows that is less
observable compared to other states. Even while tuning it was found that O, converges
to zero within no time. Estimation might be inaccurate.

Note: Figures and Code for both cases can be found in respective folders



