
ARTIFICIAL INTELLIGENCE
MANUFACTURING ME6324

FINAL REVIEW

FRAMEWORKS USED:

TOOLS: FEED FORWARD NEURAL NETWORK AND IMAGE AUGMENTATION

LANGUAGES : PYTHON

RIDHI PUPPALA (ME15B133) VISHAL CHANDRAHAS (ME15B148)



COLLECTION OF DATA

• Due to the novelty of the chosen problem statement there is no available 

data both in research journals and online platform
• The image data set has been generated by taking sample images of 

fasteners and other mechanical components using smart phone cameras 

and the data is populated using image augmentation techniques for 
training and testing over Neural Networks

• Images were taken in different perspectives, lighting conditions and 

orientation of the components to simulate the dynamic orientations and 
lighting conditions of components moving on a conveyor belt

Countersunk BoltHex Bolt Hex Nut Bearing T nut



AUGMENTATION OF IMAGE DATA

• Tensor Flow and OpenCV(Python) were used to perform image 
augmentation

• Augmentation involves a combination of affine transformations 

and addition of white and gaussian noise, blurring and other CV 
operations

• Images are resized from 4160 X 3120 to 100 X 100 pixels

• Then following Augmentation Operations are applied:
• Scaling
• Translation

• Rotation by coarse and fine angles
• Flipping
• Adding Salt and Pepper Noise

• Lighting Condition (Add Gaussian Noise)
• Perspective Transform



Resized 

Images 

(100X100)

Rotation Transformation through multiples of 30°

Flip Up, Down, 

and Transpose

Transformation

Gaussian Noise for simulating 

different Lightning conditions

Perspective Transformation to 

account for image distortion 

during movement on conveyors



TRAINING OF THE NEURAL NETWORK

• Back Propagation algorithm is 

implemented for training the 
chosen feed forward neural 
network

• The algorithm calculates the new 
weights based on the errors in 
each of the layers by calculating 

the gradients in weights and biases

• The neural network propagates through a weighted transformation with a bias represented as: 

y = Wx + b ,where W is weight matrix while x is an array of input data with 784 X 1 dimension

• Then the new weights and biases are 

updated after the back propagation 

of error signals
Summary of 

Single 

perceptron NN



CUSTOM DEFINED PYTHON FUNCTIONS

Fig. Mean Squared Error (MSE) is chosen 

as LOSS function for tuning alpha



FEEDFORWARD FUNCTION

• Feedforward function is the heart of the neural network

• It takes input images, weight and bias as numpy arrays

• It operates over the network generated using makeNN() function

• H is activation while A is pre activation function for the neurons



OPTIMIZATION AND MAIN FUNCTION

Optimization Function: Performs several 

iterations(epochs) of feedforward, back 

propagation and weights update step 

to train the network with the input data

Main function: Loads weights and bias from training 

sessions and runs feedforward to predict the label of the 

test data and compute accuracy based on correct labels



PYTHON NUMPY VS TENSORFLOW APPROACH

Comparision of the training, testing, data processing time for two different approaches

Operation Python Numpy Tensor Flow

Training ~350 seconds ~15 seconds

Data Processing ~ 30 seconds ~ 5 seconds

Testing & 

Implementation
~ 5 seconds < 2 seconds

No. of Lines of Code 180 30

Conditions
300 Iterations (Epochs)

300 Hidden Layer Neurons

784 input layer Neurons

5 classes (5 output layers)

Learning rate (alpha) = 0.005



TENSOR FLOW CODE

• Open source machine learning framework

• Flexible architecture allows easy 

deployment of computation across variety 

of platforms with inter-operability

• CPUs, GPUs, TPUs ,desktops, clusters of 

servers, mobile and edge devices

• Inbuilt functions with highly optimized 

performance and less computation time

• Save and Restore sessions of training allow 

us to keep training and testing at any time

After rigorous tuning of the parameters, 

the following were chosen:

• Learning Rate = 0.005

• No. of hidden layers = 1

• Hidden layer Neuron = 300

• Iteration (Epochs) = 300

• Input dataset size = 1500

• Input layer Neurons = 784



PERFORMANCE STATISTICS

Epochs: 100

Alpha: Variable

HLN : 300

Train Time : ~2.8s

Epochs: 100

Alpha: Variable

HLN : 500

Train Time : ~4.5s



EFFECT OF HLN AFTER SATURATION

Epochs: 200

Alpha: Variable

HLN : 300

Train Time : ~6s

Epochs: 200

Alpha: Variable

HLN : 500

Train Time : ~9s



REDUNDANCY OF HIGHER HLN AFTER SATURATION

Epochs: 300

Alpha: Variable

HLN : 500

Train Time : ~16s

Epochs: 300

Alpha: Variable

HLN : 300

Train Time : ~10s



EFFECT OF TUNING PARAMETERS ON PERFORMANCE

Parameters : Learning Rate(alpha), HLN, ILN, No . Of classes, Train Dataset Size, Epochs

Epochs

• Testing accuracy improves, but 

saturates after a certain point

• Increases train time proportionally

HLN

• Testing accuracy improves, but 

saturates after a certain point

• Increases train time

• Capable of handling higher 

volume of data

ILN

• Better prediction against higher variation

• Requires more data for better performance

• Increases train time exponentially

• Requires more number of hidden layers

No. of Classes

• Improves testing and training accuracy

• Increases train time and volume of input data

• Requires more number of hidden layers and 

efficient probability distribution function

Learning Rate (alpha)

• Training accuracy and prediction are highly sensitive to alpha

• Small αlpha implies slower gradient descent, large alpha leads to overshoot 

of minimum LOSS and divergence, the cost function chosen was MSE

• Training started from a relatively large alpha and then alpha was 

decreased during the training to allow more fine-grained weight updates.



CROPPING AND GRAYSCALE CONVERSION

Why Cropping ?
• Presence of too many white pixels in train 

and test images

• Resizing of image from (4160X3120) to 

(28,28) suppresses the features of the 

images making it difficult for the network 

to train and predict over the dataset

• When resized all the images except Hex 

bolt shrinks into a blob of grey pixels

Why Grayscale Conversion ?
• Feedforward network operates over 

single layer of perceptron

• RGB images have 3 channels which 

are a 3D matrix with depth

• Input layer of this network has 784 

neurons for each of the pixels

• Each pixels is fed in as a feature

• CNNs can be used for operating over 

higher volumes of colour image 

dataset for feature extraction

Fig. Incorrect prediction of 

T - nut as a counter sunk 

bolt when not cropped



DISCUSSIONS ON PERFORMANCE RESULTS

• Initialization of arrays to array of zeros led to degraded training and prediction

• randn() function generates a random array over gaussian distribution

• Prediction accuracy is not consistent for a for a few images, while it is consistent around 90% for 

large test image datasets

• Classification can be improved with higher volume of train data, better computational resources 

(GPUs), using CNNs for convoluting over test data for specific feature extraction



CLASSIFICATION OF FADED & CROPPED IMAGES

Faded test images

Test images with the component slightly cropped out



RESULTS WITH HLN = 100



DEGRADED PERFORMANCE WITH LESS EPOCHS



CONTOUR DETECTION & CLASSIFICATION



CONTOUR DETECTION - FEATURE EXTRACTION

• Contour Detection can be implemented post 

classification by running specific OpenCV scripts to 

search for features (feature extraction)

• Features can help identify the sub categories of the 

family of components (ex: types of bearings, fasteners)

• Canny Edge detection & contour detection can be 

deployed under calibrated environments for extracting 

simple dimensional information like bore, OD, thread 

length, flange dimensions and other dimensions



SCHEMATIC OF AN INDUSTRIAL SORTING SYSTEM

Classification & 

Feature Extraction

Training Data

Training Neural 

Network

(CPU + GPU)

Training Data Processing, 

Compression and Labelling

Data Processing

High Quality 

Video Input

Feed Forward NN 

Classifier operating 

over Trained Model

Dynamic Training

Computer and UI

PLC system for 

automated tossing

Record dimensional, 

component and 

feature information



OUTCOMES

• Feed forward Neural Network Classifier for predicting the type of component

• Populated higher volumes of data through Image Augmentation

• Developed codes for Python Numpy and Tensor Flow approach

• Comparision of custom defined Python functions and Tensor Flow

• Possible methods for extracting features and dimensional information

• Proposed schematic for a complete setup of Industrial sorting system

LEARNING OUTCOMES

• Tensor Flow & Python (Numpy)

• Image Augmentation

• Structure of Neural Networks

• OpenCV Python


